22 research outputs found

    Preconditioned Locally Harmonic Residual Method for Computing Interior Eigenpairs of Certain Classes of Hermitian Matrices

    Full text link
    We propose a Preconditioned Locally Harmonic Residual (PLHR) method for computing several interior eigenpairs of a generalized Hermitian eigenvalue problem, without traditional spectral transformations, matrix factorizations, or inversions. PLHR is based on a short-term recurrence, easily extended to a block form, computing eigenpairs simultaneously. PLHR can take advantage of Hermitian positive definite preconditioning, e.g., based on an approximate inverse of an absolute value of a shifted matrix, introduced in [SISC, 35 (2013), pp. A696-A718]. Our numerical experiments demonstrate that PLHR is efficient and robust for certain classes of large-scale interior eigenvalue problems, involving Laplacian and Hamiltonian operators, especially if memory requirements are tight

    Graph partitioning using matrix values for preconditioning symmetric positive definite systems

    Get PDF
    Prior to the parallel solution of a large linear system, it is required to perform a partitioning of its equations/unknowns. Standard partitioning algorithms are designed using the considerations of the efficiency of the parallel matrix-vector multiplication, and typically disregard the information on the coefficients of the matrix. This information, however, may have a significant impact on the quality of the preconditioning procedure used within the chosen iterative scheme. In the present paper, we suggest a spectral partitioning algorithm, which takes into account the information on the matrix coefficients and constructs partitions with respect to the objective of enhancing the quality of the nonoverlapping additive Schwarz (block Jacobi) preconditioning for symmetric positive definite linear systems. For a set of test problems with large variations in magnitudes of matrix coefficients, our numerical experiments demonstrate a noticeable improvement in the convergence of the resulting solution scheme when using the new partitioning approach
    corecore